
1

Contact-Implicit Differential Dynamic Programming
for a Hopping Robot

ROB599-014 Legged Robot Control - Term Project

Kevin Best

Abstract—Online contact planning is a desirable feature in
a legged-robot control system, as it allows the controller more
freedom in planning motions to navigate various terrains. How-
ever, the numerical consequences of including decisions regarding
contact in optimal control problems often make them difficult to
solve and prohibitively slow for real-time use. In this work, I im-
plement the contact-implicit differential dynamic programming-
based model predictive controller first presented in [1], which,
through clever relaxations of the ground contact complementarity
constraints, can select appropriate contact modes at rates suitable
for online use. After reviewing the mathematical theory behind
the controller, I demonstrate a baseline Differential Dynamic
Programming controller for contact-free systems with actuator
disturbances in simulation. Then, I demonstrate the controller’s
ability to control hopping robot with 2 actuators and 4 degrees
of freedom, performing a series of increasingly complex motions
again in simulation. My results verify the performance reported
in [1], and I propose various avenues for future investigation
regarding this promising control methodology.

I. INTRODUCTION

Aside from the significant perception and state estimation
challenges, real-time contact planning is one of the most
difficult barriers preventing legged robots from achieving
robust and agile real-world ambulation. In order to effectively
navigate unstructured, realistic environments, robots should be
able to select where and when to make contact with their
environment in real-time. As the robot’s contact conditions
(i.e. which feet/hands are in contact with the environment)
determine its equations of motion, the selection of contacts
has a strong impact on the possible behaviors that a controller
can produce.

Robots with varying contact conditions are often modeled as
hybrid systems [2]. In a hybrid system model, impact maps are
used to transition the dynamics from one continuous manifold
to another when the state enters a switching set defined by
the contact surfaces. Between contact events, the system state
evolves smoothly until it hits another switching surface.

These hybrid dynamics associated with varying contact
conditions can be challenging for traditional trajectory opti-
mization methods to handle due to the lack of differentiability
during impact events [3]. Thus, many optimal-control based
paradigms use a pre-defined contact schedule, in which the
sequence of the various contact modes are defined a priori.
The assumption of a known contact sequence allows the opti-
mal control problem (OCP) to assume when transitions occur
and thus to only optimize over the smooth manifolds of the
dynamics. However, when disturbances or other environmental

factors render the pre-defined contact sequence invalid, the
controller may be unable to stabilize the system or may not
leverage available contacts to their fullest extent. Therefore,
methods that can select contact conditions as needed are
desirable.

One method for automatically selecting the best contact con-
dition within the OCP, termed contact-implicit optimization,
is to enumerate all possible contact modes and treat them as
discrete decision variables [4]. However, the resulting OCP
becomes a mixed-integer program, which can be notoriously
difficult to solve. These methods are thus best suited to systems
with small numbers of contact modes or offline planning.
However, some formulations are able to structure the problem
as a mixed-integer quadratic program, and can solve it fast
enough for real-time use [4].

An alternative to a hybrid system model is a complementar-
ity model [5]. Complementarity models implicitly define the
hybrid dynamics by adding constraints between the normal
contact forces λn and the signed distance between the contact
point and the surface ϕ(q):

0 ≤ λn ⊥ ϕ(q) ≥ 0. (1)

The process of solving for the generalized acceleration q̈ is
thus given by a linear complementarity problem:

find q̈, λ

s.t. q̈ = f(q, q̇, u, λ)

ϕ(q) ≥ 0

λn ≥ 0

ϕ(q)Tλn = 0

(2)

where the system dynamics are given by f(q, q̇, u, λ) and λ
is defined via normal and tangential forces as λ = [λn, λt]

T .
While this formulation of the dynamics was originally de-

veloped for forward simulation, it can also be used to describe
the system dynamics in an OCP. The benefit over hybrid
formulations is that a single set of constrained dynamics are
used instead of a collection of unconstrained dynamics with
jumps between them. Thus, standard direct optimal control
approaches can be applied, such as direct collocation in [6].

However, the addition of complementarity constraints to a
direct collocation OCP results in a poorly-conditioned nonlin-
ear program, as the orthogonality constraint (1) is numerically
stiff. This stiffness makes the OCP often too slow to solve for
online use. For example, Posa et al. reported solution times
on the order of minutes and hours for small horizon plans [6].

2

A relaxation to the complementarity constraint was pro-
posed by Manchester et al. in order to improve the convergence
properties of the OCP [7]. A slack variable s was introduced to
allow violation of the complementarity condition during early
iterations of the OCP:

s− ϕ(q)Tλn = 0. (3)

As the solution converged, the cost weight on ||s||2 was
iteratively increased, converging back to the original comple-
mentarity condition in the limit.

Shooting methods are an alternative to collocation methods,
with the benefit of not requiring the system dynamics as
explicit constraints in the OCP. One particular shooting method
that has gained popularity in recent years is Differential
Dynamic Programming (DDP). DDP is a local value iteration
method in which the action-value function Q is approximated
at each time step as a quadratic function. The optimal control
sequence is iteratively calculated by minimizing Q [8], [9].
This minimization has a closed form solution in the case of
an unconstrained problem, or a small quadratic program in the
case of box constraints [10]. An iterative process alternating
between forward simulation and backwards control updates is
repeated until convergence.

In order to calculate the Q function, one must calculate the
gradients and Hessians of the dynamics and cost functions. As
hybrid systems have undefined gradients at impacts, they are
not compatible with DDP when considering a contact-implicit
approach. Complementarity methods, however, do always have
well-defined gradients and are thus can be used in a contact-
implicit DDP [11]. However, the finite-differencing method
used in [11] to calculate the contact-related gradients was not
fast enough for real-time use.

Kim et. al [1], [12] avoid the speed penalties of finite-
differencing by utilizing the methods in [13] to analytically
calculate the contact impulse gradient, and thus execute the
DDP controller at sufficient rates for online-use. Another inno-
vation in [1] is a renaissance of the complementarity relaxation
idea [7] applied to this gradient calculation. By relaxing the
contact gradient, the authors show that the optimization can
more easily discover new contact modes that further reduce
the cost function. The use of non-relaxed hard contact in
the forward rollout helps ensure that the optimizer arrives at
physically realistic solutions.

In this work, I implemented the DDP-based Model Predic-
tive Controller (MPC) presented in [1], [12] in a MATLAB sim-
ulation environment. This controller utilizes a contact-implicit
formulation that allows for dynamic movements including
contact based on simple floating-base reference trajectories.
I applied the controller to a hopping robot system, inspired
by the robot shown in Fig. 1. I first show that the controller
can generate hopping behaviors when given a static desired
pose above the ground. I then demonstrate a single sideways
hop and a continuous sideways hopping gait. Finally, I discuss
the limitations of my implementation and various avenues for
future improvements.

Fig. 1. A photo of the four DoF robot system that was the inspiration of
this work. The planar system has two floating base DoF and two configurable
joint angles. I built this robot during a semester of undergraduate research
with Professor Patrick Wensing at the University of Notre Dame.

II. METHODS

This section details the theory behind the DDP-MPC con-
troller. I first discuss the system dynamics, including the
hard-contact calculations and the calculation of the gradients
required to use DDP. I then outline the DDP algorithm
with details of its specific implementation, and I discuss the
simulation used to evaluate the controller. The software ac-
companying this work can be found in this Github repository.

A. System Dynamics

As an initial study, I used a planar robot with one rotational
joint and one prismatic joint for a total of four degrees of
freedom (DOF). The floating base was free to move within
the plane, but not to rotate, similar to the robot in Fig. 1. This
system was selected due to its simplicity (e.g., no kinematic
loops), minor nonlinearity, and computational scale. Future
studies can build on this work and incorporate systems with
more complex dynamics.

1) Rigid Body Dynamics: I implemented the system within
the SpatialV2 framework [14]. This library provides pre-
built functions to calculate the system forward dynamics, given
by

q̈ = f(q, q̇, u, λ̃) = M−1(q)
(
Bu− c(q, q̇) + JT (q)λ̃

)
. (4)

The generalized coordinates and their first two time derivatives
are given by q, q̇, q̈ respectively. M is the inertia matrix, and
c comprises the coriolis, centrifugal, and gravitational terms.
The actuation selector matrix B maps control inputs u to
the generalized forces. J is the Jacobian that maps forces at
the robot foot λ̃ in a local contact frame with a normal and
tangential direction to the generalized forces. The tilde is used
to distinguish forces λ̃ from corresponding impulses λ, where
λ =

∫∆t

0
λ̃dt.

DDP is a discrete-time framework and thus it is helpful to
also denote the system’s discrete time dynamics. Let the state
vector x be [qT , q̇T]T . Using an explicit Euler approximation
with period ∆t, we write the discrete dynamics F (·) that map

https://github.com/tkevinbest/ROB599_leg_W24

3

from a current state xk at timestep k to the state at the next
timestep xk+1 as

xk+1 = F (qk, q̇k, uk, λk), (5)

= xk +

[
q̇k

f(qk, q̇k, uk, λk)

]
∆t. (6)

For notation simplicity, we will often denote values at the next
timestep with an apostrophe (i.e., xk+1 = x′) and if no index
is denoted, we assume it refers to the current timestep (i.e.,
xk = x).

2) Contact Dynamics: In order to calculate the contact
impulse λ, we follow the approach presented in [15]. We
limit our analysis to a single possible contact point to sim-
plify the algorithm. However, one could extend to multiple
simultaneous contact points using the iteration methods from
[15]. If the distance between the ground and the contact
point ϕ(q) > 0, the impulse is trivially zero due to the
complementarity condition. Otherwise, the impulse must be
determined using the maximum dissipation principle.

In the case of ϕ(q) ≤ 0, we can find λ as the impulse
that minimizes the kinetic energy of the contact point. Let
v′ = J(q′)q̇′, M =

(
J(q)M−1J

)
, and n and t subscripts

denote normal and tangential directions, respectively. The
contact impulse is given by the solution to

λ = arg min
λ ∈ S

v′TMv′ (7)

where S is the feasible set defined by the friction cone1 and
the complementarity condition.

When ϕ(q) ≤ 0, contact can be categorized into three
classes: 1) opening contacts, 2) slip contacts, and 3) stick
contacts. In opening contacts (i.e., vn > 0), the impulse
is trivially zero, as the foot is separating from the contact
surface. In the case of slips and sticks, the impulse is given
by the solution of (7). In the case of a single stick contact, the
optimization problem has a closed form solution of

λ = −Mh (8)

where h = Jq̇ + JM−1∆t(Bu − c). In the event of a slip,
we simply clamp the stick solution to the friction cone, as our
system is planar. See [15] for more detail on the non-planar
case, which is significantly more complicated.

3) Gradients and Hessians of the Dynamics: DDP requires
expressions for the gradients and Hessians of the discrete
dynamics with respect to the state and control variables. We
utilize the derivation presented in [13]. The derivatives of (6)
with respect to x and u are

∇xF (·) = I +

[
0 I
∂f
∂q

∂f
∂q̇

]
∆t, (9)

∇uF (·) = M−1

(
B +

∂f

∂u

)
∆t. (10)

1As we are only considering a planar system, the friction cone and the
friction pyramid are identical

Thus, we require the derivatives of the continuous dynamics
with respect to x and u. Applying the chain rule yields

∂f

∂q
=

∂M−1

∂q
(c− τ + JT λ̃)

+M−1

(
∂c

∂q
+

∂JT

∂q
λ̃+ JT ∂λ̃

∂q

)
,

(11)

∂f

∂q̇
= M−1

(
∂c

∂q̇
+ JT ∂λ̃

∂q̇

)
, (12)

∂f

∂u
= JT ∂λ̃

∂u
. (13)

Recursive algorithms exist to quickly evaluate the derivatives
shown in blue [16], which are already implemented in the
extended version of SpatialV2.

The terms in red however involve differentiating the contact
force λ̃. In [13], the authors present a closed form solution to
these derivatives based on the exact complementarity condi-
tion. However, in [1], [12] the authors suggest a relaxation of
this derivative in order to assist the DDP algorithm in finding
novel contact conditions. By relaxing the complementarity
condition vnλn = 0 → vnλn = ρ for a small ρ, Kim et al.
show better convergence properties in the DDP optimization.
We therefore use this relaxed gradient in this work.

The velocity of the contact point at the next iteration is
given by the linear relationship

v′ = Aλ+ b, (14)

where

A = JM−1JT , (15)

b = JM−1((−c+Bu)∆t+Mq̇). (16)

Note that the expressions for A and B differ slightly for the
case of sliding, but I refer the reader to [13] for the sake of
space. A is denoted separately from M for this reason, but
are identical in the case of a sticking contact. By relaxing
the complementary condition, Kim et al. [1] show that the
derivative of λ with respect to an arbitrary vector ξ is

∂λ

∂ξ
= −(A+ ρD)−1

(
∂A

∂ξ
λ+

∂b

∂ξ

)
, (17)

where D is a diagonal matrix of the form D = diag(1/λ2
n, 0).

In this work, we use ρ = 0.1 for the relaxation parameter.
Noting that ∂λ̃

∂q = ∂λ
∂q

1
∆t , (17) can be used to evaluate each

of the red terms in (11) - (13). In my implementation, CASADI
was used to evaluate ∂A

∂ξ , etc.

B. DDP Optimal Control

Let us denote the discrete control sequence as U ≡
[u0, . . . , uN−1], the discrete state sequence X ≡ [x0, . . . , xN]
and the initial state as x0 = [qT0 , q̇

T
0]

T . We seek to solve the
following finite horizon OCP:

arg min
U

J(x0, U) =

N−1∑
k=1

ℓ(x̃k, uk) +
1

2
x̃T
NPx̃N

s.t. uk ∈ [u, ū]∀k

4

where ℓ(x̃k, uk) =
1
2

(
x̃T
k Px̃k + uT

kRuk

)
is the stage cost, P

and R are diagonal positive definite weighting matrices and
[u, ū] is the interval defining the admissible control set. We
denote the deviation from a desired trajectory xr as x̃ ≡ x−xr.

A single iteration2 of the DDP update consists of three
parts: 1) a forward rollout with the current estimate of the
optimal control trajectory, 2) a backwards pass in which a
step direction is calculated for the control update, and 3) a
line search to select the step size. As the forward rollout is
trivial given (6), we focus on the backwards pass and the line
search below.

1) Backwards Pass: The DDP backwards pass recursively
selects optimal changes in the control inputs in order to
minimize a quadratic approximation of the cost-to-go. Using
Bellman’s optimality principle, we define the cost-to-go as

V (x, k) = min
u

[ℓ(x̃, u) + V (F (x, u), k + 1)]. (18)

The action-value function Qk tells us the change in V for a
given perturbation in state and control δx and δu respectively
at timestep k:

Qk(δx, δu) ≡ℓ(x+ δx, u+ δu, k)− ℓ(x, u, k)

+ V (F (x+ δx, u+ δu), k + 1)

− V (F (x, u), k + 1)

(19)

Using a second-order Taylor series, we approximate Qk. Note
that we use the notation Gx to denote ∇xG and we drop the
k subscript on the RHS for notational simplicity:

Qk ≈ 1

2

 1
δx
δu

T  0 QT
x QT

u

Qx Qxx QT
ux

Qu Qux Quu

 1
δx
δu


where

Qx = ℓx + FT
x Vx (20)

Qu = ℓu + FT
u Vx (21)

Qxx = ℓxx + FT
x VxxFx (22)

Qux = ℓux + FT
u VxxFu (23)

Quu = ℓuu + FT
u VxxFu (24)

Given our simple quadratic definition of ℓ(x̃, u), the deriva-
tives of the stage cost are either affine in x̃ or u, constant
matrices, or zero. Note that we neglect the tensor terms that
involve the second order derivatives of the dynamics, resulting
in a Gauss-Newton approximation of the Hessian [17]. This
approximation is common in real-time DDP implementations
(often named iLQR), as these second derivatives are computa-
tionally expensive to compute and the convergence benefits of
a full Newton step are often outweighed by the faster iteration
time. Note that we can evaluate the derivatives in parallel to
improve performance.

Starting at timestep N , we initialize Vx = Px̃ and Vxx = P.
We then iteratively calculate (20) - (24) for each kth timestep,
beginning at k = N − 1. At each iteration, we also calculate

2The algorithm discussed in this section is implemented in the
run_iteration method of the DDP_Controller class of the software
repository.

the optimal change in the control to minimize the cost-to-
go approximation. Minimizing Q with respect to δu with no
constraints results in the closed form expression

δu∗ = −Q−1
uuQu︸ ︷︷ ︸
d

−Q−1
uuQux︸ ︷︷ ︸
−K

δx, (25)

where d is a feed-forward control update and K is a feedback
gain matrix stabilizing the state trajectory. However, this
minimization does not respect the control constraints from the
original OCP. Therefore, Tassa et al. proposed the following
constrained QP to accommodate actuator limits [10]:

arg min
d,K

Q(δx, δu)

s.t. u ≤ u+ δu ≤ ū

The rows of K corresponding to the constrained directions are
overwritten with zeros, as in [10].

2) Armijo Line Search: In the case of linear dynamics and
no actuator limits, the solution given by (25) will converge
in a single iteration and the feedback gains K will be the
same as the LQR solution. However for nonlinear systems,
it is possible that taking this full Netwon step can result in
a cost increase. This is because the Q function is only a
local approximation and too large of an update can make it
diverge. We utilize a backtracking line search with an Armijo
acceptance condition to balance between adequate step size
and convergence [18]. During the backwards pass, we can
calculate the expected cost reduction at each time step [10]
as

∆Jexp,k = −1

2
(dTQuud). (26)

This expected cost comes from substituting the control policy
δu back into Q. Let ∆Jexp =

∑N−1
0 ∆Jexp,k. If J is the cost

at the beginning of the iteration and J ′ is the cost after the
control update, we iteratively reduce a line search parameter
α until the Armijo condition is met:

J ′ < J − γα∆Jexp. (27)

In my experiments, I set the hyperparameter γ = 0.01,
though the behavior of the controller to this parameter was
not overly sensitive. To improve speed, an array of α values
was evaluated in parallel and the largest value that satisfied
(27) was selected as α∗. Finally, the control policy is updated
as

u′ = u+ α∗d+K(x′ − x). (28)

C. MPC Simulation

To evaluate the controller performance, I set up a simulation
environment in which the DDP controller was used in a
receding horizon MPC framework, similar to [1], [12]. Let
∆t be the update period of the MPC controller. The reference
state xr is calculated by forward integration of the desired
coordinate velocity q̇d. The simulation proceeded as follows:

1) Run DDP to convergence with q̇d = 0. This novel step
was added with the aim of improving the initial guess
for the dynamic references.

5

Fig. 2. Configuration and control trajectories of the cart-pole swing up test.
Despite the added actuator noise, the MPC controller is able to achieve the
desired configuration of a horizontal position x = 0 and pole position θ = π.

2) Run DDP to convergence with new initial guess and
actual q̇d. Store u′ from (28).

3) Simulate forward using (6) for ∆t seconds using u′ as
the control policy. Store new state x′. The rate of the
simulation is set to 1 kHz to better approximate online
use in continuous time.

4) Run DDP for at most two iterations starting at x′ and
using u′[2 : end, end] as the initial guess. Store u′ from
(28).

5) Return to 3 and repeat.

III. RESULTS

I tested the DDP-MPC controller in various scenarios based
on the cases presented in [1]. I first tested a cart-pole system
without contact, but with actuator disturbances to validate
the DDP-MPC implementation. This step is important, as
the value of MPC is being able to re-plan when the actual
state differs from the planned state. Then, I considered three
desired hopping motions: in place, single hops, and continuous
horizontal hopping. These were each realized by commanding
various position trajectories of the floating base, with either
step or linearly increasing changes.

The main script that implements these results can be
found in the Github repository under ./DDP_MPC.m3. The
repository README contains GIF videos of various example
behaviors, including the ones discussed here.

A. Cart-Pole

To first validate the DDP controller without the contact
dynamics, I implemented a cart-pole swing up test, as the
cart-pole is the canonical toy system in nonlinear control. The
MPC was run at 100 Hz for 100 timesteps (i.e., 1.0 s horizon
length). As the dynamics of a cart-pole are quite simple, this
longer horizon is achievable without a large slow-down in
computation. Uniform random noise (ũ ∼ U(−5, 5) N) was
included on the force produced by the actuator to highlight the
controller’s ability to respond to disturbances. Fig. 2 shows
how the controller is able to achieve the desired configuration
of a horizontal position x = 0 and pole position θ = π despite
the actuator noise.

3When running this script, one may need to uncomment lines defining the
gradients of the dynamics. These can be commented out to avoid recompiling
the gradient functions if they are unchanged in order to speed up execution.

Fig. 3. Position and ground impulse trajectories of the robot performing a
vertical hopping. The controller identifies the hopping gait as optimal when
simply given a constant reference height 0.6 m above the ground.

Fig. 4. Position and ground impulse trajectories of the robot performing a
sideways hop from an initial x position of -0.5 to 0.0. The robot slightly
overshoots the desired position and hops back to the left to recover.

B. RP-Hopper

Next, I tested the controller on the RP hopping robot
described in Section II-A. The MPC was run at 200 Hz for 50
timesteps (i.e., 0.25 s horizon length). To parallel the results in
[1], I began with a simple hopping-in-place task. I commanded
a constant desired floating base height of 0.6 m above the
ground, with zeros for the rest of the coordinates. The normal
height of the robot is 0.3 m, so the robot must jump to reach
this configuration. The controller is able to identify that the
best way to minimize the cost is to repeatedly jump from
the ground to get close to the desired position, shown in Fig.
3. The robot does not actually achieve the desired height, as
the cost function is balancing the height objective with other
state and control objectives. However, if height were more
important, this penalty weight could be further tuned.

Next, I tested the system’s ability to perform a single hop
to the right, starting at an x position of -0.5 m with a desired
x position of 0.0 m. It is important to note that this reference
position was a constant, resulting in a step input to the system.
The controller is able to create a series of hops that get the
robot close to the desired position. It initially overshoots the
desired position and hops back to the left to recover (Fig. 4,
note the direction of the tangential impulse). The speed and
aggressiveness of this hop was again sensitive to the penalty
matrix P , where too large of values would cause significant
overshoot and an under-damped convergence to the desired
position, similar to what is observed in linear system step
responses with insufficient damping.

Finally, I commanded a constant horizontal velocity of the
floating base at 0.5 m/s at a nominal base height of 0.3 m. The
controller develops a sideways hopping motion, that tracks the

https://github.com/tkevinbest/ROB599_leg_W24

6

Fig. 5. State, control, and impulse trajectories of the robot tracking a constant horizontal velocity reference of 0.5 m/s. The controller implicitly identifies
the hopping gait and is able to maintain the desired velocity with reasonable accuracy.

desired velocity with reasonable accuracy (Fig. 5). Depending
on the desired speed and the cost weights, different kinds of
hopping gaits were produced, some with smaller and more
uniform jumps and others with larger, less frequent jumps.

IV. DISCUSSION

The results highlight the DDP-based MPC’s ability to
implicitly discover the best contact conditions to achieve a
variety of desired behaviors. The online nature of the con-
troller is able to reject the disturbances from actuator noise
and mismatches in dynamics (i.e. different simulation rates).
My re-implementation of the methods presented in [1], [12]
confirms that the concept of combining a relaxed gradient with
true hard contact in the simulation is a promising combination
for contact-implicit DDP.

A. Limitations

Various limitations of this work should be noted. First,
the implementation is rather slow, currently running at rates
much slower than real-time. However, other work [12], [19],
[20] has demonstrated the ability to perform online DDP for
MPC applications, and it is likely that more code optimization
and efficiency is possible. Further, the contact model requires
sufficient update rates in order to avoid constraint drift due
to the velocity-based contact model [15]. Improvements may
be seen by using higher order discretization methods [7] that
prevent this ground penetration and allow larger ∆t and thus
increase speed.

Like any shooting method, the identified optimum is de-
pendent on the initial guess. I proposed a two-step solution
procedure where we first solve the static reference condition
before trying to solve the dynamic reference condition. How-
ever, I did not systematically test the efficacy of this approach.
Another way to improve the dependence on the initial guess
is to move from single shooting to multiple shooting DDP, as
was done in the journal extension from [1] to [12]. Multiple
shooting allows initial conditions for select points in the state
trajectory, allowing a better conditioned optimization problem
that is less likely to land in a bad local minimum [21], [3].

Finally, I observed significant sensitivity between the system
performance and the chosen P and R cost matrices. Changing
the weights on different state and control variables would
result in different selected contact patterns. As suggested
in [1], a more informative cost function could be used to

better elicit the desired behavior and potentially lessen the
importance of rigorous gain tuning. For instance, a term that
encourages periodic leg swinging could make the gait more
regular.

B. Open Questions and Future Work

There are various questions within contact-implicit DDP
that warrant further investigation. The first is investigating
the mismatch between the forward dynamics and the gradi-
ents used in the DDP due to the relaxation and its effects
on convergence. In my experience, the DDP iteration never
converges after a certain point, likely due to this mismatch.
While the gradient calculation says that cost should decrease
in a given direction, the forward simulation disagrees due to
this mismatch, and the optimization ends up stalling as α → 0
in the line search. Future work should be performed to better
understand this effect and perhaps a method involving itera-
tively tightening the relaxation parameter as the optimization
converges should be proposed.

This convergence issue may perhaps explain why the system
does not seem to reach a steady state, even with steady state
references (e.g. Fig. 3). I would expect that after the initial
transients dissipate, the robot would settle into a consistent
gait. However, the gait continues to have slight variation.
Perhaps slight numerical differences and the lack of full
convergence of the DDP iterations are to blame. A more
rigorous understanding of this phenomenon may be beneficial.

Finally, it is still unclear how to best combine contact-
implicit approaches with contact-explicit approaches. Perhaps
a framework combining contact-explicit approaches in the near
horizon with contact-implicit in the distant horizon could be
beneficial, similar to [20]. This may allow for more consistent
planning in the near term, while still preserving the flexibility
of contact-implicit planning in the far term.

V. CONCLUSION

In this work, I implemented the contact-implicit DDP MPC
approach presented in [1], [12]. The addition of a relaxed
complementarity condition in the calculation of the contact
gradient allows for the controller to discover new contact
modes and better minimize the cost function. I demonstrated
the controller’s efficacy in various simulation experiments,
highlighting its ability to perform a diverse class of behaviors
involving making and breaking contact. Finally, I discussed

7

various limitations of my implementation and posed multiple
avenues for future work to investigate this promising method-
ology.

REFERENCES

[1] G. Kim, D. Kang, J.-H. Kim, and H.-W. Park, “Contact-Implicit Differ-
ential Dynamic Programming for Model Predictive Control with Relaxed
Complementarity Constraints,” 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), vol. 00, pp. 11 978–11 985,
2022.

[2] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and
B. Morris, Feedback Control of Dynamic Bipedal Robot Locomotion.
CRC Press, 10 2018.

[3] P. M. Wensing, M. Posa, Y. Hu, A. Escande, N. Mansard, and A. D.
Prete, “Optimization-Based Control for Dynamic Legged Robots,” IEEE
Transactions on Robotics, vol. 40, pp. 43–63, 2023.

[4] A. Ibanez, P. Bidaud, and V. Padois, “Emergence of humanoid walk-
ing behaviors from mixed-integer model predictive control,” in 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2014, pp. 4014–4021.

[5] D. E. Stewart and J. C. Trinkle, “An Implicit Time-stepping Scheme For
Rigid Body Dynamics With Inelastic Collisions And Coulomb Friction,”
International Journal for Numerical Methods in Engineering, vol. 39,
no. 15, pp. 2673–2691, 1996.

[6] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory
optimization of rigid bodies through contact,” The International Journal
of Robotics Research, vol. 33, no. 1, pp. 69–81, 2014.

[7] Z. Manchester, N. Doshi, R. J. Wood, and S. Kuindersma, “Contact-
implicit trajectory optimization using variational integrators,” The Inter-
national Journal of Robotics Research, vol. 38, no. 12-13, pp. 1463–
1476, 2019.

[8] D. Mayne, “A Second-order Gradient Method for Determining Optimal
Trajectories of Non-linear Discrete-time Systems,” International Journal
of Control, vol. 3, no. 1, pp. 85–95, 1965.

[9] D. Ruxton, “Differential dynamic programming and optimal control of
inequality constrained continuous dynamic systems,” Master’s Thesis,
CQUniversity, 12 1991.

[10] Y. Tassa, N. Mansard, and E. Todorov, “Control-Limited Differential Dy-
namic Programming,” 2014 IEEE International Conference on Robotics
and Automation (ICRA), pp. 1168–1175, 2014.

[11] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and Stabilization of
Complex Behaviors through Online Trajectory Optimization,” 2012.

[12] G. Kim, D. Kang, J.-H. Kim, S. Hong, and H.-W. Park, “Contact-implicit
mpc: Controlling diverse quadruped motions without pre-planned con-
tact modes or trajectories,” 2023.

[13] K. Werling, D. Omens, J. Lee, I. Exarchos, and C. K. Liu, “Fast
and feature-complete differentiable physics engine for articulated rigid
bodies with contact constraints,” in Robotics: Science and Systems, 2021.

[14] R. Featherstone, Rigid body dynamics algorithms. Springer, 2007.
[15] J. Hwangbo, J. Lee, and M. Hutter, “Per-Contact Iteration Method for

Solving Contact Dynamics,” IEEE Robotics and Automation Letters,
vol. 3, no. 2, pp. 895–902, 2018.

[16] J. Carpentier and N. Mansard, “Analytical Derivatives of Rigid Body
Dynamics Algorithms,” in Robotics: Science and Systems (RSS 2018),
Pittsburgh, United States, Jun. 2018.

[17] H. Li, W. Yu, T. Zhang, and P. M. Wensing, “A Unified Perspective
on Multiple Shooting In Differential Dynamic Programming,” 2023
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), vol. 00, pp. 9978–9985, 2023.

[18] L. Armijo, “Minimization of functions having Lipschitz continuous first
partial derivatives.” Pacific Journal of Mathematics, vol. 16, no. 1, pp.
1 – 3, 1966.

[19] C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud,
M. Naveau, J. Carpentier, L. Righetti, S. Vijayakumar, and N. Mansard,
“Crocoddyl: An Efficient and Versatile Framework for Multi-Contact
Optimal Control,” in IEEE International Conference on Robotics and
Automation (ICRA), 2020.

[20] H. Li and P. M. Wensing, “Cafe-mpc: A cascaded-fidelity model pre-
dictive control framework with tuning-free whole-body control,” arXiv
preprint, 2024.

[21] H. Li, W. Yu, T. Zhang, and P. M. Wensing, “A Unified Perspective
on Multiple Shooting In Differential Dynamic Programming,” 2023
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), vol. 00, pp. 9978–9985, 2023.

	Introduction
	Methods
	System Dynamics
	Rigid Body Dynamics
	Contact Dynamics
	Gradients and Hessians of the Dynamics

	DDP Optimal Control
	Backwards Pass
	Armijo Line Search

	MPC Simulation

	Results
	Cart-Pole
	RP-Hopper

	Discussion
	Limitations
	Open Questions and Future Work

	Conclusion
	References

