A Compensated Open-Loop Impedance Controller Evaluated on the Second-Generation Open-Source Leg Prosthesis
Jan 1, 2024·,,,,·
0 min read
T. Kevin Best
G. C. Thomas
S. R. Ayyappan
R. D. Gregg
E. J. Rouse
Abstract
Accurate impedance control is key for biomimetic mechanical behavior in lower-limb robotic prostheses. However, due to compliance, friction, and inertia in the drivetrain, the commonly used open-loop impedance control strategy can often produce inaccurate results without appropriate compensation. This article presents a controller that accounts for these dynamics to improve the impedance rendering accuracy of a robotic prosthesis research platform, the Open-Source Leg (OSL v2). We first develop a dynamic model of the OSL v2’s drivetrain and show that it accurately predicts the system’s joint torque with 97% mean explained variance across a diverse array of experiments. We then present a controller that compensates for the OSL v2’s inherent dynamics using a combination of feedback linearization and actuator-state feedback control. We experimentally validate this controller on the OSL v2 with a rotary dynamometer and in treadmill walking experiments. We show that it can render various constant impedance behaviors with higher stiffness and damping accuracy than a baseline controller. We also show our controller’s ability to replicate the variable impedance trajectories of the human ankle joint, suggesting that this control approach could enable robotic prostheses that are biomimetic in their mechanical impedance in addition to their kinematics and kinetics.
Type
Publication
IEEE/ASME Transactions on Mechatronics